
2300 GENG ROAD, SUITE 102, PALO ALTO, CA 94303 O 650 213 5600 F 650 843 1424 WWW.FORTIFYSOFTWARE.COM

Abstract:

Software security is a serious problem, and it is garnering more and more
attention. However, the processes that go into making an application more
secure are relatively immature. Where do you start? This paper provides
seven practical steps organizations can begin today — with the emphasis
on practical.
1. �Quickly evaluate the current state of software security and create a plan

for dealing with it throughout the development life-cycle.
2. �Specify the risks and threats to the software so they can be eliminated

before they are introduced.
3. �Review the code for security vulnerabilities introduced during

development.
4. Test and verify the code for vulnerabilities.
5. �Build a gate to prevent applications with vulnerabilities from going into

production.
6. �Measure the success of the security plan so that the process can be

continually improved.
7. �Educate stakeholders about security so they can implement the

security plan.
Any development organization can implement this security plan and begin
to receive a return on their efforts within a minimal period of time. The key
is to start now.

Seven Practical Steps to Delivering
More Secure Software
Actions You Can Take Today

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 �

Delivering More Secure Code: The Seven Steps

No one currently working in IT can escape the carnage wreaked by hackers.
Worms, private data hacks, and other exploits are increasingly designed to
target specific vulnerabilities in software ranging from operating systems to
business applications. For that reason, attention is increasingly focused on the
application development community. The industry is starting to ask itself how
it can build more secure software.

More and more organizations are making software security a priority. These
organizations have found that the key to getting started is to select a few
practical activities that produce artifacts that can begin an improvement cycle.
These activities can be as simple as a single “gate” or a series of small tasks
at each step in the software development life cycle (SDLC). However, even this
approach is easier said than done. The inertia against change can be so great
that it is easy to become paralyzed — which usually means security is not
being addressed sufficiently at any step —not in design, not in development,
not in testing, not in production.

As a way to help, this document proposes seven practical steps that
development groups can take to deliver more secure software — with the
emphasis on “practical.” These are actions that everyone can take today.
Although these steps may not provide a magic bullet that slays the beast
with one shot, they will generate measurable results in a short amount of time.
The key is to get started immediately.

	 More and more organizations
are making software security a
priority. These seven steps can act
as a guideline for getting started.“ ”

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 �

Evaluation

Internal security experts exist and have
been identified

1 2 3 4 5

Threat analysis completed for every
project

1 2 3 4 5

Education programs for security occur
regularly

1 2 3 4 5

Specific tools and resources have been
acquired and allocated

1 2 3 4 5

Post-deployment security is fully integrated
with overall process

1 2 3 4 5

Vulnerability response maximizes benefits
and prevents repeats

1 2 3 4 5

Elements for a Plan

Who: Assign
individuals to tasks
and roles

How issues will
be tracked and
reported

Automated tools
that support steps

What: List steps
and success
criteria for each

Team processes to
triage, prioritize,
and take action on
reported security
defects

Process checklists
 & requirements

When: Include
steps and
activities in
project timeline

Assigned security
expert or team lead

Step1: Quick Evaluation and Plan

The first step is to evaluate the current state of software security inside your
organization and create a plan for what additional steps to take to address
security. This evaluation and plan need not be a comprehensive, multi-month
effort. The best way to start is by simply creating lists of activities currently
undertaken to address security and activities you’d like to implement. For
example, the simple table in Diagram 1 documents a project’s overall software
security preparedness, providing a scale to measure against.

A plan — no matter how brief or short-term — is critical for getting buy-in
within the organization. Realistically, your first plan might need to be a “proof-
of-concept” that allows you to build a more thorough and aggressive plan after
positive results have been obtained. Regardless of your approach, the plan
should address three elements: (1) the software security infrastructure that
surrounds each software development project; (2) specific security activities
each project team chooses to undertake; and (3) how you will manage
vulnerabilities that are found. The table in Diagram 2 provides example
elements of a plan. The steps outlined in the rest of this paper are excellent
components of any plan as well — so you may want to start there.

Diagram 1

Diagram 2

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 �

Step 2: Specify the Risk and Threats to the Software

Security is all about risk mitigation. Software applications that store customers’
private information are more sensitive about risk than an internal application
for scheduling conference rooms. So, similar to how you would list your group’s
capabilities to build more secure software, you should determine the risk
associated with a piece of software and the threats to its safety.

Risk analysis is a field unto itself and can be found in commercial solutions such
as Microsoft’s STRIDE and standards-based approaches such as NIST’s ASSET.
Although varied in their implementation, approaches like these typically have
many detailed steps and involve a significant investment of time.

A simpler technique than a full-blown risk analysis is a threat analysis, which
considers the threats posed to an application. Threat analysis helps you avoid
security mistakes in your design and focuses code reviews and security testing
on the most vulnerable components of the application. For that reason, you should
consider this step as one of the most important you can undertake.

A simple threat analysis can be divided into two phases. Phase one identifies
the assets an application must protect and evaluates which assets are most
important. This task can be tricky as some assets are more apparent than others
and the nature of assets varies from application to application. Examples of assets
include records of private information, such as credit card numbers, employee/
customer records, or financial figures. Other examples include resources that an
organization provides to others, such as e-commerce solutions, corporate Web
sites, and e-mail support for customers. Still others are intangible resources, such
as your company’s reputation. For example, how would a security breach affect the
credibility of the company?

 Threat analysis helps you
avoid security mistakes in your
design and focuses code audits and
security testing on the most likely
targets. “
”

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 �

Phase two of threat analysis consists of understanding the application itself and
the dangers it faces from attackers. Organizations should develop a high-level
model of the application’s components and dataflow paths. The application’s
attack surface should be mapped, identifying interfaces that accept input from
users or interact with other systems.

Teams should note any points on the attack surface that allow an exploit to compromise
the integrity, availability, or confidentiality of an asset. Finally, rank the threats based on
importance of the asset affected and the likelihood of exploit.

This threat analysis exercise, while simpler than a full-blown risk analysis, still
may require a high level of expertise about the application and how attackers
work. However, it does not need to be precise, and the return can be substantial
in that it focuses efforts on the most important areas without a lot of waste.
Of course, not even the most thorough threat analysis can prevent the introduction
of security vulnerabilities during development, which leads us to Step 3.

 Source code reviews /
audits are critical to ensure security.
The best automated tools help the
human auditor quickly identify and
prioritize security flaws.“

”

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 �

Step 3: Review the Code

There is a simple fact in the software world — the code that gets deployed is
the true instantiation of any application. Consequently, organizations should
review code throughout the implementation and testing stages for security
vulnerabilities that may be introduced during development. In most every case,
these reviews uncover numerous security vulnerabilities that would otherwise be
deployed. And, coupled with threat analysis, an organization can use the review
as a verification that the software does not leave open vulnerabilities to the
threats they most care about.

Many groups today rely upon manual code reviews to perform this step. Manual
audits, however, require rich security expertise and tremendous investments
in time. Fortunately, there are consistent and well-researched patterns of how
developers introduce security vulnerabilities into applications, providing a basis
for accurate, automated security analysis tools. The best source code analysis
tools can evaluate multiple tiers and track the flow of data within an application.
They can work on bodies of code that range from small to large, and effectively
present and manage their own results so human auditors can quickly identify and
prioritize potential security flaws.

Security source code analysis embedded in developer environments, such as
Microsoft Visual DevStudio and Eclipse, can also serve as basic and ongoing
educational tools for developers. These tools provide feedback at the point the
error is introduced, allowing for a less costly fix and more concrete learning
experience.

Below is a list of key capabilities required for effective automated security source
code tools:

• �Comprehensive identification of numerous vulnerability types

• �Ability to perform varied analysis, such as global data flow, control flow and
configuration file analysis, to reduce false positives

• �Ability to analyze across application tier boundaries in order to find
vulnerabilities that manual reviews would never discover

• Multiple filtering, querying, and sorting options on analysis results

• �Support for all the languages used by your development teams

• Extensible to enforce your particular secure coding polices

• �Support for analysis at the developer desktop via Integrated Development
Environment plug-ins

 Source code reviews /
audits are critical to ensure security.
The best automated tools help the
human auditor quickly identify and
prioritize security flaws.“

”

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 �

Step 4: Test and Verify the Code

Organizations should test code for security flaws in addition to features and
correctness. Testing is a complimentary technique to code reviews, a final
exam for the secure software development life-cycle, and something that can
also be aided by automation. The warning here is that traditional functionality
testing is not effective at finding security vulnerabilities. Software quality
tests are traditionally focused on verifying a set of features as defined by some
reasonably well specified requirements or expected user actions. Security
testing requires a different mindset and approach — for it is the absence of
security that testers must find.

A common approach is to conduct application penetration testing. The purpose
of the penetration test is to simulate attacks against the software to discover
anomalous behavior. As with code reviews, these tests can be performed
manually or with an automated tool. Similar to source code analysis, human
penetration testing is capable of uncovering complex problems that cannot
be found any other way. However, they require skills, expertise, and time
unavailable in most organizations.

Automated tools can provide a knowledge base of known attacks and rapidly
fire those attacks at an application, but they often miss the subtle flaws or input
fields human hackers exploit. In addition, penetration testing coverage — the
amount of a running application actually exercised in a penetration test — is
often very small with respect to an application’s true attack surface. One
solution is to use results from source code analysis to feed into the penetration
test so that (1) the testing takes into account all input sources and ignores
areas where vulnerabilities do not exist and (2) the remediation task is greatly
enhanced.

There is no easy answer to testing for security. The most practical approach,
however, is NOT to rely upon testing to find the vulnerabilities. Testing should
primarily verify that the vulnerabilities found in code review have been
eliminated.

 Application penetration
testing is the most used — and the
most misused — activity in software
security. Testing for security should not
be relied upon to find security flaws,
but to verify that the vulnerabilities
found in code review were
eliminated.

“
”

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 �

Step 5: Build a Gate Code

The most fundamental and arguably the best way to get the process started and
achieve tangible results is to construct a security “gate.” Many organizations
begin by requiring a single gate as the software leaves testing and before it is
released to operations or production. This “final check” gate has the advantage
that it is simple to understand and raises the visibility of security issues before
release. A downside is that a milestone so late in the development cycle does
not provide adequate time to adjust for security defects found in the code.

Obviously, a key question is what criteria will be used to judge whether the
software is fit to pass through a gate milestone. Since the base artifact is the
software itself, a practical criterion would be an audit of the code. A code
review gate — whether it is required during active development, testing, or as
a last check before releasing the software to production — typically discovers
significant numbers of security vulnerabilities.

As the organization’s secure development processes mature, the criteria can
expand to require specific steps completed in detail and discovered issues
remedied; i.e., threat analysis was performed, code reviews were conducted and
issues uncovered were mitigated, security testing was done, no other serious
vulnerabilities were found, and minor vulnerabilities were corrected. This more
stringent gate may also contain a specialized security audit via independent
security experts before declaring the application “production ready.”

 The most fundamental and
arguably the best way to achieve
tangible results is to implement a
security “gate” in the development
process.“
”

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 �

Step 6: Measure

Organizations should measure the success of their security activities so that
the process can be improved to meet changing requirements. Software security
is still an emerging field — as are the metrics that judge the effectiveness
of activities within that field. However, there are many activities that can and
should be measured to provide insight into the state of software security for an
organization or project. Organizations can measure adherence to the security
process as it was designed, or measure the success of the security process as
it is implemented. For example, Microsoft measures the effectiveness of their
SDLC by counting the number of security bulletins within the first 12 months
following a release (see Diagram 3). While the Microsoft metric is a trailing
metric, measures taken during development can provide sufficient time to allow
remediation of vulnerabilities pre-deployment. These metrics include tracking
measures such as vulnerabilities found per category, by severity, and over time.
For example, one project may introduce buffer overflow or SQL injection errors
more frequently than another — signaling a candidate for additional education.
Audit coverage and history, vulnerability aging, and even composite risk
measures are possible.

 The key is to begin collecting data early on to create a baseline during
development.

Vulnerability Trends Per Project Pluto Orion

100

75

25

0

V
U

LN
ER

A
B

IL
IT

IE
S

Dec 27 Dec 30 Jan 02 Jan 05 Jan 08

Vulnerability Severities For Project Pluto

Critical High Medium Low

Low = 3

Medium = 1

High = 9

Critical = 3

70

60

50

40

30

20

10

0
Windows 2000 Windows Server 2003

62

24

Diagram 4

Diagram 3

Diagram 5

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 10

Step 7: Educate

After deciding what security measures the plan will implement, the most crucial
issue is to educate the key stakeholders so they can effectively implement
the security activities. Even with training, developers are not likely to become
security experts because they have other pressing responsibilities. Typically,
some group or selected individuals must be assigned to the role of security
“leads.” They may be individuals who already have an interest in security,
individuals who are specifically trained in security, or individuals explicitly hired
to fill that role. These experts will be responsible for implementing the security
plan from beginning to end and are critical to its success.

The presence of security experts, however, does not relieve others of the
responsibility for security. Security must be the responsibility of every member
of the organization, even when starting small. Without full participation, no
security plan is likely to succeed. However, because individuals cannot be
responsible for what they don’t understand, education is key.

To understand security requires knowing a lot of specific details. Developers
must understand how hackers think, they need to know about vulnerable
functions, and how many bits a session ID should be for a site that receives 7
million hits a day — and on and on. Organizations cannot make every member
of every architecture, development, quality assurance, and operations team a
security expert, so how can security be improved?

The security plan for responding to vulnerabilities suggests developing internal
best practices. These are excellent security training resources for new and
existing engineers. What better source of critical mistakes to avoid than those
that have already been made? Leveraging internally developed best practices as
educational tools provides targeted security knowledge with proven relevancy.

Consider sending key individuals in the development life-cycle to training
sessions or bringing a security expert in-house to provide on-site training.
Money and time invested in training are well spent, especially within the
context of the previous six steps.

Ultimately, the solution is to make security a mindset that pervades the
development group. Everyone should be thinking about what could go wrong
each time they design a feature, produce a build, or write a line of code. Each
should ask “How could an attacker take advantage of what I am doing?” If,
at every step, everyone is thinking about what could go wrong, security will
improve.

 Don’t expect groups to pass
a “test” without the knowledge and
skills necessary to perform. Create
best practices for your particular
situation.“
”

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 11

Conclusion

Software security is a serious problem. To mitigate the risks software
development organizations must start thinking about security as a part of every
step in the total software development life-cycle. Development teams can utilize
a practical, seven-step plan to deliver more secure software:

• Evaluate the current state of software security and create a plan for dealing
with it throughout the development life cycle

• Specify the risks and threats to the software so they can be

 eliminated before they are introduced

• �Build a gate to prevent applications with vulnerabilities from going into
production

• �Review the code for security vulnerabilities introduced during development

• Test code for vulnerabilities

• �Measure the success of the security plan so that the process can be
continually improved

• �Educate stakeholders about security so they can implement the security plan

Any development organization can implement this security plan and begin to
receive a return on their efforts within a minimal period of time. The key is to
start now.

SEVEN PRACTICAL STEPS TO DELIVERING MORE SECURE SOFTWARE	 12

Additional Information Sources

The following books are excellent sources of additional information: Gary
McGraw. Software Security: Building Security In. Addison-Wesley, 2006;
and Michael Howard and Steve Lipner. The Security Development Lifecycle.
Microsoft Press, 2006. Further background and information can also be found
in the IEEE Security & Privacy editorial titled “Building Security In” guest edited
by D. Gary McGraw. Specifically, this editorial provides additional discussion on
source code analysis (May/June 2006)

About Fortify Software

Fortify Software products protect companies from today’s greatest security risk:
The software applications that run their businesses.

Combining deep application security expertise with extensive software
development experience, Fortify Software has defined the market with award-
winning products that span the software development cycle. Today, Fortify
Software fortifies the software for the most demanding customer deployments,
including the world’s largest, most varied code bases.

Fortify Software is the software security vendor of choice of government
agencies and Fortune 500 companies in a wide variety of industries, such as
energy, financial services, healthcare, e-commerce, media, telecommunications,
publishing, insurance, systems integration and information management.

For more information about Fortify Software, plus a free Security Assessment
to help you determine your exposure to security risk, visit our Web site or
contact us today:

Web site: www.fortifysoftware.com
Telephone: 650.213.5600
Email: contact@fortifysoftware.com

©2006 Fortify Software, Inc. All rights reserved. Fortify is a registered trademark of Fortify Software, Inc.

